Square, thin body allows selection of mounting and piping direction, and expands flexibility of device design.

DERS WITH GUIDES

Select guide rod bearing according to application Wide range includes scraper specification to prevent dust from entering.

- 1. Slide bearing type Superior wear resistance makes it optimum for stopper or other devices needing resistance to lateral loads with shocks.
- 2. Rolling bearing type

Smooth operation with high precision makes it optimum for pushers and lifters.

|Enables piping from 2 directions

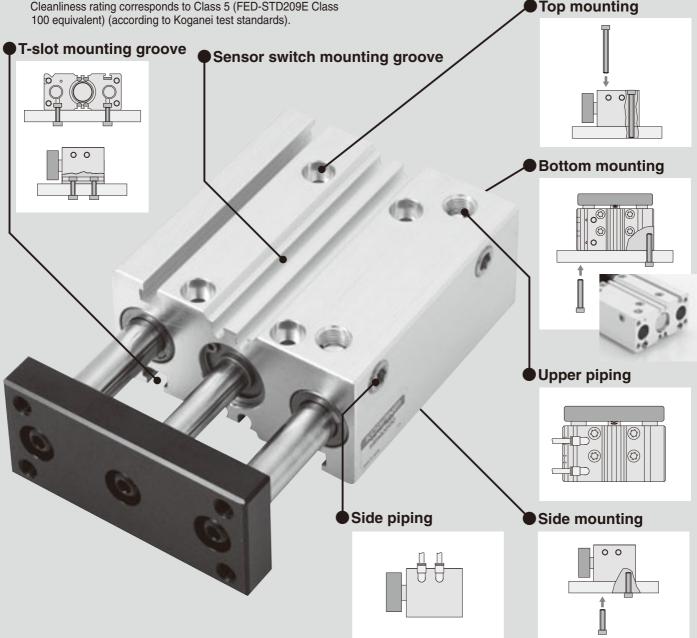
Rational device design allows selection of piping location according to the mounting environment. In addition, the piping for dust collection ports used in cylinders for clean systems can also be approached from 2 directions.

Cylinders for clean systems also in line-up

Cleanliness rating corresponds to Class 5 (FED-STD209E Class 100 equivalent) (according to Koganei test standards).

Slender-figured sensor switch

Magnets for sensor switches are standard on all models. Embedded shape avoids protrusion of switches, to simplify mounting in tight spaces.


End keep cylinder also available

End keep mechanism supports stable operation in the vertical direction to prevent workpiece from falling caused by shut off in the air supply or any decrease of air pressure.

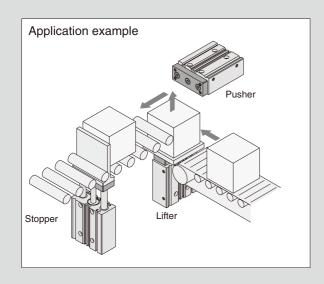
Four types of mounting possible

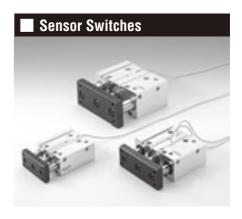
Non-ion as a Standard

Can be used on Cathode-ray tube (CRT) manufacturing lines, etc., since copper materials are not used. (Except cylinders for clean systems)

Stroke Adjusting Cylinders

Stroke Adjusting Cylinders


Adjusting rod can be used to adjust the range of the push-side stroke by $0\sim 10$ mm $[0\sim 0.394in.]$.


End Keep Cylinders

Flat shape prevents the keep portion from protruding from the side surface, to allow easy mounting in tight spaces.

Handling Instructions and Precautions

Mounting

- While any mounting direction is allowed, the mounting surface should always be flat. Twisting or bending during mounting may disturb the accuracy and may also result in air leaks or improper operation.
- Care should be taken that scratches or dents on the cylinder's mounting surface may damage its flatness.
- 3. The hexagon socket head bolt on the rod end plate has been secured with adhesive. Always confirm that the rod end plate and hexagon socket head bolts are secured before using the cylinder.
- 4. In applications subject to large shocks, reinforcing the bolt mounting, by installing a support to the cylinder body for example, is recommended.
- Ensure that the mounting bolts for the cylinder body and end plate are sufficiently strong.
- 6. Take preventive measures when shocks or vibrations might loosen the bolts.
- 7. Do not leave scratches or dents in the areas where the piston rod and the guide rod contact. It could result in damage to the seal or in air leaks.
- 8. The piston rod and guide rod are coated with grease. Do not wipe it off, as it may result in improper operation. Apply grease if no lubrication is visible. Grease: General type; Lithium grease No. 2

Sensor switch

The magnet for sensor switches is built into the cylinder. Mounting sensor switch will enable use in sensor switch applications.

Caution: For the sensor switch mounting location and moving instructions, see

Atmosphere

- If using in locations subject to dripping water, dripping oil, etc., or to large amounts of dust, use a cover to protect the unit.
- Do not use the cylinder in ambient atmospheres that could result in corrosion. Application in this kind of environment may result in damage or in improper operation.
- 3. Do not use in extremely dry conditions.
- 4. The most desirable temperature range for cylinders is 5~60°C [41~140°F]. Do not use in condition where temperatures exceed 60°C [140°F], as it could result in damage or in improper operation. In addition, since the moisture content at temperatures below 5°C [41°F] could freeze, resulting in damage or in improper operation, care should be taken to prevent freezing.

General precautions

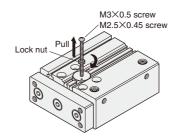
- Always thoroughly blow off (use compressed air) the tubing before piping. Entering chips, sealing tape, rust, etc., generated during piping work could result in air leaks or other defective operation.
- 2. Air used for the cylinder should be clean air that contains no deteriorated compressor oil, etc. Install an air filter (filtration of a minimum 40 µm) near the cylinder or valve to remove collected liquid or dust. In addition, drain the air filter periodically. Collected liquid or dust entering the cylinder may cause improper operation.
- The product can be used without lubrication, if lubrication is required, use Turbine Oil Class 1 (ISO VG32) or equivalent. Avoid using spindle oil or machine oil.

When in use

- 1. Do not place hands, etc., in the cylinder's operating range.
- 2. Pay full attention to the cylinder operating direction during set up.
- Care should be taken to avoid trapping body or fingers between the cylinder body and the end plate when the cylinder retracts.
- Confirm that no residual pressure remains inside the cylinder before commencing maintenance.
- 5. In its application as a stopper, it is assumed that the carried objects will be cardboard boxes, plastic cases, etc. In cases where steel and other metal blocks are carried, select a sufficiently margined safer product or take measures to fully absorb the impacts.
- 6. Use the cylinder at speed of 500mm/s [19.7in./sec.] or less. But when the speed and loads are high even within the allowable ranges, install an external stopper, etc., to ensure that the cylinder is not exposed to direct shocks.
- 7. Do not use SGDA Q (rolling bearing type) as a stopper.

Handling Instructions and Precautions

Control circuit for the end keep cylinder

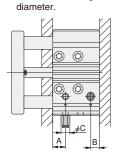

- For control of the Jig End Keep Cylinder with Guide, we recommend the use of 2-position, 4-, 5-port valves. Avoid the use of control circuit with ABR connection (exhaust center) 3-position valves that exhaust air from 2 delivery ports.
- Always use meter-out control for speed control. Meter-in control may result in failure of the locking mechanism to release.

Cautions: 1. It is dangerous to supply air to a connection port on a side with a locking mechanism while the cylinder has already been exhausted, because the piston rod may suddenly extend (or retract). In addition, since the lock piston could also cause galling of the lock piston and piston rod, resulting in defective operation. Always supply air to the connection port on the opposite side of the locking mechanism to ensure applying back pressure.

- 2. When restarting operations after air has been exhausted from the cylinder due to completion of operations or to an emergency stop, always start by supplying air to a connection port on the opposite side of the locking mechanism.
- Connect the valve port A (NC) to the connection port on the side with the locking mechanism.

Manual operation of locking mechanism

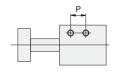
While the locking mechanism is normally released automatically through cylinder operations, it can also be released manually. For manual release, insert an M3 \times 0.5 (ϕ 12, 16 is M2.5 \times 0.45) screw that has 30mm [1.18in.] screw length into the opening for manual override, thread it in about 3 turns into the internal lock piston, and then pull up the screw. To maintain the manual override for adjustment, etc., thread the locknut onto the screw and, with the locking mechanism in a released state, tighten the locknut against the cylinder.



Cautions: 1. It is dangerous to release the lock when load (weight) is present on the piston rod, because it may cause the unintended piston rod's extension (or retraction). In this case, always supply air to the connection port opposite the one adjacent to the locking mechanism before releasing the locking mechanism.

- 2. If the locking mechanism cannot easily be released even with manual override, it could be the result of galling of the lock piston and piston rod. In this case, supply air to the connection port opposite the one adjacent to the locking mechanism before releasing the locking mechanism.
- 3. Water, oil, dust, etc., intruding through the opening for manual override may be a cause of defective locks or other erratic operation. If using in locations subject to dripping water, dripping oil, etc., or large amounts of dust, use a cover to protect the unit.

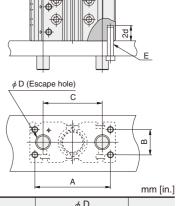
Precautions for Mounting of Fittings


In the installation shown in the diagram below, be aware of the fitting outer

				[]	
Bore size	Port	Port lo	cation	Fitting outer diameter	
Dole Size	size	Α	В	φC	
12 [0.472]	M5×	0 [0 354]	6 [0.236]	φ 11 [0.433] or less	
16 [0.630]	0.8	9 [0.354]	7.5 [0.295]	φ 13 [0.512]or less	
20 [0.787]	D-1/0	11 [0.433]	10 [0.394]	φ 19 [0.748] or less	
25 [0.984]	Rc1/8	12 [0.472]	10 [0.394]		
32 [1.260]	De1/0	10 [0.394]	12 [0.472]	φ 19 [0.748] or less	
40 [1.575]	Rc1/8	14 [0.551]	13 [0.512]	ϕ 25 [0.984] or less	
50 [1.969]	D-1/4	10 [0.394]	15 [0.591]	φ 19 [0.748] or less	
63 [2.480]	Rc1/4	10 [0.394]	14 [0.551]	φ 13 [0.740] 01 1855	

mm [in.]

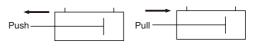
- ※ Positions A and B are dimensions of the port location closer to the end surface of the body.
- In products with a stroke of 10mm, be aware of the P dimension when using the side ports.



			mm [in.]		
Bore size	Port	Between-ports dimension	Fitting outer diameter		
Dole Size	size	Р	φC		
12 [0.472]	M5×	12 [0.472]	φ 11 [0.433]		
16 [0.630]	0.8	12 [0.472]	orless		
20 [0.787]					
25 [0.984]	Rc1/8	15 [0.591]	φ 14 [0.551]		
32 [1.260]	HC1/6	15 [0.591]	orless		
40 [1.575]					
50 [1.969]	De1/4	16 [0.630]	φ 15 [0.591]		
63 [2.480]	Rc1/4	10 [0.030]	orless		

Caution: Apply sealants when re-using a block-off plug. Avoid getting sealant into the cylinder.

Precautions When Bottom Mounting

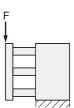

- Drill the guide rod escape hole when the stroke is 75mm or longer (except for SGDAK☐ 12)
- When using as a stopper, etc., subject to shocks, the mounting screw's mating thread length should be as close to 2d as possible.

Bore				φ	D	Bolt E for
	Α	В	С	SGDA□	SGDA□Q	
size				Slide bearing	Rolling bearing	mounting
12 [0.472]	51 [2.008]	18 [0.709]	42 [1.654]	10 [0.394]	8 [0.315]	M4×0.7
16 [0.630]	60 [2.362]	20 [0.787]	47 [1.850]	12 [0.472]	10 [0.394]	M5×0.8
20 [0.787]	72 [2.835]	26 [1.024]	58 [2.283]	16 [0.630]	14 [0.551]	M6×1
25 [0.984]	80 [3.150]	30 [1.181]	63 [2.480]	18 [0.709]	16 [0.630]	M6×1
32 [1.260]	100 [3.937]	34 [1.339]	80 [3.150]	22 [0.866]	18 [0.709]	M8×1.25
40 [1.575]	106 [4.173]	40 [1.575]	90 [3.543]	22 [0.866]	18 [0.709]	M8×1.25
50 [1.969]	130 [5.118]	44 [1.732]	110 [4.331]	27 [1.063]	22 [0.866]	M10×1.5
63 [2.480]	144 [5.669]	44 [1.732]	122 [4.803]	27 [1.063]	22 [0.866]	M10×1.5

Cylinder Thrust

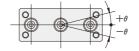
Select a suitable cylinder bore size considering the load and air pressure to obtain the required thrust. Since the figures in the table are calculated values, select a bore size that results in a load ratio (load ratio = $\frac{\text{Load}}{\text{Calculated value}}$) of 70% or less (50% or less for high speed application).

N [lbf.]

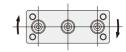

Bore size	Piston rod diameter	Oneration	Pressure area					Air pressu	ıre MPa [ps	i.]			
mm [in.]	mm [in.]	Operation	mm² [in.²]	0.1 [15]	0.2 [29]	0.3 [44]	0.4 [58]	0.5 [73]	0.6 [87]	0.7 [102]	0.8 [116]	0.9 [131]	1.0 [145]
12		Push side	113.0 [0.1752]	11.3 [2.54]	22.6 [5.08]	33.9 [7.62]	45.2 [10.2]	56.5 [12.7]	67.8 [15.2]	79.1 [17.8]	90.4 [20.3]	101.7 [22.86]	113.0 [25.40]
[0.472]	6 [0.236]	Pull side	84.8 [0.1314]	8.5 [1.91]	17.0 [3.82]	25.4 [5.71]	33.9 [7.62]	42.4 [9.53]	50.9 [11.4]	59.3 [13.3]	67.8 [15.2]	76.3 [17.15]	84.8 [19.06]
[•]		Stroke adjustment	84.8 [0.1314]	8.5 [1.91]	17.0 [3.82]	25.4 [5.71]	33.9 [7.62]	42.4 [9.53]	50.9 [11.4]	59.3 [13.3]	67.8 [15.2]	76.3 [17.15]	84.8 [19.06]
16		Push side	201.0 [0.3116]	20.1 [4.52]	40.2 [9.04]	60.3 [13.6]	80.4 [18.1]	100.5 [22.59]	120.6 [27.11]	140.7 [31.63]	160.8 [36.15]	180.9 [40.67]	201.0 [45.18]
[0.630]	8 [0.315]	Pull side	150.7 [0.2336]	15.1 [3.39]	30.1 [6.77]	45.2 [10.2]	60.3 [13.6]	75.4 [16.95]	90.4 [20.32]	105.5 [23.72]	120.6 [27.11]	135.6 [30.48]	150.7 [33.88]
[0.000]		Stroke adjustment	150.7 [0.2336]	15.1 [3.39]	30.1 [6.77]	45.2 [10.2]	60.3 [13.6]	75.4 [16.95]	90.4 [20.32]	105.5 [23.72]	120.6 [27.11]	135.6 [30.48]	150.7 [33.88]
20		Push side	314.0 [0.4867]	31.4 [7.06]	62.8 [14.1]	94.2 [21.2]	125.6 [28.23]	157.0 [35.29]	188.4 [42.35]	219.8 [49.41]	251.2 [56.47]	282.6 [63.53]	314.0 [70.59]
[0.787]	10 [0.394]	Pull side	235.5 [0.3650]	23.6 [5.31]	47.1 [10.6]	70.7 [15.9]	94.2 [21.18]	117.8 [26.48]	141.3 [31.76]	164.9 [37.07]	188.4 [42.35]	212.0 [47.66]	235.5 [52.94]
[00.]		Stroke adjustment	235.5 [0.3650]	23.6 [5.31]	47.1 [10.6]	70.7 [15.9]	94.2 [21.18]	117.8 [26.48]	141.3 [31.76]	164.9 [37.07]	188.4 [42.35]	212.0 [47.66]	235.5 [52.94]
25	12 [0.472]	Push side	490.6 [0.7604]	49.1 [11.0]	98.1 [22.1]	147.2 [33.09]	196.3 [44.13]	245.3 [55.14]	294.4 [66.18]	343.4 [77.20]	392.5 [88.24]	441.6 [99.27]	490.6 [110.3]
[0.984]		Pull side	377.6 [0.5853]	37.8 [8.50]	75.5 [17.0]	113.3 [25.47]	151.0 [33.94]	188.8 [42.44]	226.6 [50.94]	264.3 [59.41]	302.1 [67.91]	339.8 [76.39]	377.6 [84.89]
[0.00.]		Stroke adjustment	377.6 [0.5853]	37.8 [8.50]	75.5 [17.0]	113.3 [25.47]	151.0 [33.94]	188.8 [42.44]	226.6 [50.94]	264.3 [59.41]	302.1 [67.91]	339.8 [76.39]	377.6 [84.89]
32		Push side	803.8 [1.2459]	80.4 [18.1]	160.8 [36.15]	241.2 [54.22]	321.5 [72.27]	401.9 [90.35]	482.3 [108.4]	562.7 [126.5]	643.1 [144.6]	723.5 [162.6]	803.8 [180.7]
[1.260]	16 [0.630]	Pull side	602.9 [0.9345]	60.3 [13.6]	120.6 [27.11]	180.9 [40.67]	241.2 [54.22]	301.4 [67.75]	361.7 [81.31]	422.0 [94.87]	482.3 [108.4]	542.6 [122.0]	602.9 [135.5]
[]		Stroke adjustment	602.9 [0.9345]	60.3 [13.6]	120.6 [27.11]	180.9 [40.67]	241.2 [54.22]	301.4 [67.75]	361.7 [81.31]	422.0 [94.87]	482.3 [108.4]	542.6 [122.0]	602.9 [135.5]
40		Push side	1256.0 [1.9468]	125.6 [28.23]	254.2 [57.14]	376.8 [84.70]	502.4 [112.9]	628.0 [141.2]	753.6 [169.4]	879.2 [197.6]	1004.8 [225.9]	1130.4 [254.1]	1256.0 [282.3]
[1.575]	16 [0.630]	Pull side	1055.0 [1.6353]	105.5 [23.72]	211.0 [47.43]	316.5 [71.15]	422.0 [94.87]	527.0 [118.5]	633.0 [142.3]	738.5 [166.0]	844.0 [189.7]	949.5 [213.4]	1055.0 [237.2]
		Stroke adjustment	1055.0 [1.6353]	105.5 [23.72]	211.0 [47.43]	316.5 [71.15]	422.0 [94.87]	527.0 [118.5]	633.0 [142.3]	738.5 [166.0]	844.0 [189.7]	949.5 [213.4]	1055.0 [237.2]
50		Push side	1962.5 [3.0419]	196.3 [44.13]	392.5 [88.23]	588.8 [132.4]	785.0 [176.5]	981.3 [220.6]	1177.5 [264.7]	1373.8 [308.8]	1570.0 [352.9]	1766.3 [397.1]	1962.5 [441.2]
[1.969]	20 [0.787]	Pull side	1648.5 [2.5552]	164.9 [37.07]	329.7 [74.12]	494.6 [111.2]	659.4 [148.2]	824.3 [185.3]	989.1 [222.3]	1154.0 [259.4]	1318.8 [296.5]	1483.7 [333.5]	1648.5 [370.6]
		Stroke adjustment	1648.5 [2.5552]	164.9 [37.07]	329.7 [74.12]	494.6 [111.2]	659.4 [148.2]	824.3 [185.3]	989.1 [222.3]	1154.0 [259.4]	1318.8 [296.5]	1483.7 [333.5]	1648.5 [370.6]
63		Push side	3115.7 [4.8293]	311.6 [70.05]	623.1 [140.1]	934.7 [210.1]	1246.3 [280.2]	1557.8 [350.2]	1869.4 [420.2]	2181.0 [490.3]	2492.5 [560.3]	2804.1 [630.4]	3115.7 [700.4]
[2.480]	20 [0.787]	Pull side	2801.7 [4.3426]	280.2 [62.99]	560.3 [126.0]	840.5 [188.9]	1120.7 [251.9]	1400.8 [314.9]	1681.0 [377.9]	1961.2 [440.9]	2241.3 [503.9]	2521.5 [566.9]	2801.7 [629.9]
[2.400]		Stroke adjustment	2801.7 [4.3426]	280.2 [62.99]	560.3 [126.0]	840.5 [188.9]	1120.7 [251.9]	1400.8 [314.9]	1681.0 [377.9]	1961.2 [440.9]	2241.3 [503.9]	2521.5 [566.9]	2801.7 [629.9]

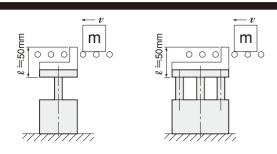
Allowable Lateral Load

■ Lateral load (F) on the rod end should be at or below the figures in the table below.


Lateral load (r) on the rod end should be at of below the figures in the table below.												
	Stroke mm	10	20	30	40	50	75	100	125	150	175	200
Bore mm [in.]	Type	10	20	30	40	30	/3	100	123	130	173	200
10 [0 470]	Slide bearing type	29 [6.5]	23 [5.2]	19 [4.3]	16.5 [3.7]	15 [3.4]	27.5 [6.2]	23 [5.2]	_	_	_	_
12 [0.472]	Rolling bearing type	26 [5.8]	20 [4.5]	17 [3.8]	14.5 [3.3]	13 [2.9]	24 [5.4]	20 [4.5]	_	_	_	_
16 [0 620]	Slide bearing type	37 [8.3]	30.5 [6.9]	26 [5.8]	22.5 [5.1]	20 [4.5]	35 [7.9]	30 [6.7]	_	_	_	_
16 [0.630]	Rolling bearing type	40 [9.0]	32 [7.2]	27 [6.1]	24 [5.4]	19 [4.3]	34 [7.6]	28 [6.3]	_	_	_	_
20 [0 707]	Slide bearing type	69 [15.5]	58 [13.0]	50 [11.2]	44 [9.9]	40 [9.0]	91 [20.5]	78 [17.5]	68 [15.3]	60 [13.5]	54 [12.1]	49 [11.0]
20 [0.787]	Rolling bearing type	58 [13.0]	49 [11.0]	38 [8.5]	36 [8.1]	33 [7.4]	77 [17.3]	66 [14.8]	58 [13.0]	51 [11.5]	46 [10.3]	42 [9.4]
05 [0 004]	Slide bearing type	95 [21.4]	80.5 [18.1]	70 [15.7]	61 [13.7]	55 [12.4]	116 [26.1]	100 [22.5]	87 [19.6]	77 [17.3]	70 [15.7]	63 [14.2]
25 [0.984]	Rolling bearing type	58 [13.0]	49 [11.0]	38 [8.5]	37 [8.3]	33 [7.4]	77 [17.3]	66 [14.8]	58 [13.0]	51 [11.5]	46 [10.3]	42 [9.4]
32 [1.260]	Slide bearing type	273 [61.4]	237 [53.3]	209 [47.0]	188 [42.3]	170 [38.2]	195 [43.8]	160 [36.0]	150 [33.7]	134 [30.1]	122 [27.4]	111 [25.0]
32 [1.200]	Rolling bearing type	113 [25.4]	98 [22.0]	86 [19.3]	77 [17.3]	70 [15.7]	150 [33.7]	130 [29.2]	115 [25.9]	103 [23.2]	94 [21.1]	86 [19.3]
40 [4 575]	Slide bearing type	273 [61.4]	237 [53.3]	209 [47.0]	188 [42.3]	170 [38.2]	195 [43.8]	160 [36.0]	150 [33.7]	134 [30.1]	122 [27.4]	111 [25.0]
40 [1.575]	Rolling bearing type	113 [25.4]	98 [22.0]	86 [19.3]	77 [17.3]	70 [15.7]	150 [33.7]	130 [29.2]	115 [25.9]	103 [23.2]	94 [21.1]	86 [19.3]
E0 [1 060]	Slide bearing type	398 [89.5]	351 [78.9]	314 [70.6]	284 [63.8]	260 [58.4]	272 [61.1]	240 [54.0]	213 [47.9]	193 [43.4]	176 [39.6]	161 [36.2]
50 [1.969]	Rolling bearing type	135 [30.3]	119 [26.8]	106.5 [23.9]	96 [21.6]	88 [19.8]	170 [38.2]	150 [33.7]	134 [30.1]	121 [27.2]	110 [24.7]	100 [22.5]
62 [2 490]	Slide bearing type	398 [89.5]	351 [78.9]	314 [70.6]	284 [63.8]	260 [58.4]	272 [61.1]	240 [54.0]	213 [47.9]	193 [43.4]	176 [39.6]	161 [36.2]
63 [2.480]	Rolling bearing type	135 [30.3]	119 [26.8]	106.5 [23.9]	96 [21.6]	88 [19.8]	170 [38.2]	150 [33.7]	134 [30.1]	121 [27.2]	110 [24.7]	100 [22.5]

End Plate Non-rotation Accuracy heta


Bore size mm [in.]	SGDA	SGDAQ	SGDAKQ, CS-SGDAQ		
12 [0.472]	±0.1°	±0.06°	±0.06°		
16 [0.630]	±0.09°	±0.06°	±0.06°		
20 [0.787]	±0.08°	±0.07°	±0.05°		
25 [0.984]	±0.07°	±0.07°	±0.05°		
32 [1.260]	±0.06°	±0.03°	±0.03°		
40 [1.575]	±0.06°	±0.03°	±0.03°		
50 [1.969]	±0.05°	±0.03°	±0.03°		
63 [2.480]	±0.05°	±0.03°	±0.03°		


Note: When cylinder is retracted (initial value).
Guide rod deflection excluded.

Allowable Twisting Torque for the End Plate

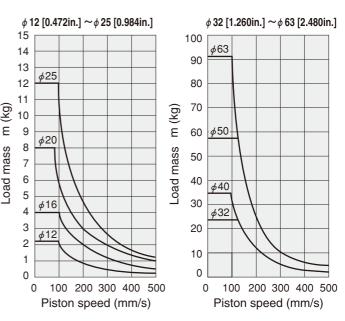
											N	·m [ft·lbf]
Bore mm [in.]	Stroke mm Type	10	20	30	40	50	75	100	125	150	175	200
12	Slide bearing type	0.30 [0.221]	0.24 [0.178]	0.20 [0.148]	0.17 [0.125]	0.16 [0.118]	0.29 [0.214]	0.24 [0.177]	_	_	_	_
[0.472]	Rolling bearing type	0.27 [0.199]	0.21 [0.155]	0.18 [0.133]	0.15 [0.111]	0.14 [0.103]	0.25 [0.184]	0.21 [0.155]	_	_	_	_
16	Slide bearing type	0.43 [0.317]	0.36 [0.266]	0.31 [0.229]	0.26 [0.192]	0.24 [0.177]	0.41 [0.302]	0.35 [0.258]	-	_	_	_
[0.630]	Rolling bearing type	0.47 [0.347]	0.38 [0.280]	0.32 [0.236]	0.28 [0.207]	0.22 [0.162]	0.40 [0.295]	0.33 [0.243]		_	_	_
20	Slide bearing type	1.00 [0.738]	0.84 [0.620]	0.73 [0.538]	0.64 [0.472]	0.58 [0.428]	1.32 [0.974]	1.13 [0.833]	0.99 [0.730]	0.87 [0.642]	0.78 [0.575]	0.71 [0.524]
[0.787]	Rolling bearing type	0.84 [0.620]	0.71 [0.524]	0.55 [0.406]	0.52 [0.384]	0.48 [0.354]	1.12 [0.826]	0.96 [0.708]	0.84 [0.620]	0.74 [0.546]	0.67 [0.494]	0.61 [0.450]
25	Slide bearing type	1.50 [1.106]	1.27 [0.937]	1.10 [0.811]	0.96 [0.708]	0.87 [0.642]	1.83 [1.350]	1.58 [1.165]	1.37 [1.011]	1.21 [0.892]	1.10 [0.811]	0.99 [0.730]
[0.984]	Rolling bearing type	0.91 [0.671]	0.77 [0.568]	0.60 [0.443]	0.58 [0.428]	0.52 [0.384]	1.21 [0.892]	1.04 [0.767]	0.91 [0.671]	0.80 [0.590]	0.72 [0.531]	0.66 [0.487]
32	Slide bearing type	5.46 [4.027]	4.74 [3.496]	4.18 [3.083]	3.76 [2.773]	3.40 [2.508]	3.90 [2.877]	3.20 [2.360]	3.00 [2.213]	2.68 [1.976]	2.44 [1.800]	2.22 [1.637]
[1.260]	Rolling bearing type	2.26 [1.667]	1.96 [1.446]	1.72 [1.269]	1.54 [1.136]	1.40 [1.033]	3.00 [2.213]	2.60 [1.918]	2.30 [1.696]	2.06 [1.519]	1.88 [1.387]	1.72 [1.269]
40	Slide bearing type	6.14 [4.529]	5.33 [3.931]	4.70 [3.467]	4.23 [3.120]	3.83 [2.825]	4.39 [3.238]	3.60 [2.655]	3.38 [2.493]	3.02 [2.228]	2.75 [2.028]	2.50 [1.844]
[1.575]	Rolling bearing type	2.54 [1.874]	2.21 [1.630]	1.94 [1.431]	1.73 [1.276]	1.58 [1.165]	3.38 [2.493]	2.93 [2.161]	2.59 [1.910]	2.32 [1.711]	2.12 [1.564]	1.94 [1.431]
50	Slide bearing type	10.95 [8.077]	9.65 [7.118]	8.64 [6.373]	7.81 [5.761]	7.15 [5.274]	7.48 [5.517]	6.60 [4.868]	5.86 [4.322]	5.31 [3.917]	4.84 [3.570]	4.43 [3.268]
[1.969]	Rolling bearing type	3.71 [2.736]	3.27 [2.412]	2.93 [2.161]	2.64 [1.947]	2.42 [1.785]	4.68 [3.452]	4.13 [3.046]	3.69 [2.722]	3.33 [2.456]	3.03 [2.235]	2.75 [2.028]
63	Slide bearing type	12.05 [8.888]	10.71 [7.900]	9.58 [7.066]	8.66 [6.388]	7.93 [5.849]	8.30 [6.122]	7.32 [5.399]	6.50 [4.794]	5.89 [4.344]	5.37 [3.961]	4.91 [3.622]
[2.480]	Rolling bearing type	4.12 [3.039]	3.63 [2.677]	3.25 [2.397]	2.93 [2.161]	2.68 [1.977]	5.19 [3.828]	4.58 [3.378]	4.09 [3.017]	3.69 [2.722]	3.36 [2.478]	3.05 [2.250]

Allowable Range When Used as a Stopper

Precautions for handling

Notes: 1. When using as a stopper, select product with a stroke of 50mm or less.

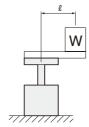
- 2. The rolling bearing type cannot be used as a stopper.
- When the stopper becomes subject to friction force generated by friction between the carried object and the conveyor, etc., keep the friction force at the allowable lateral load or below.

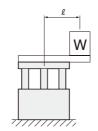

ϕ 12 [0.472in.] $\sim \phi$ 20 [0.787in.] ϕ 25 [0.984in.] $\sim \phi$ 63 [2.480in.] (Slide bearing) (Slide bearing) 50 ϕ 20 ϕ 50, ϕ 63 400 ϕ 16 Carried object mass Carried object mass 300 200 φ32,φ40 $\phi 12$ 100 φ25 0 0 10 20 30 0 10 Conveyor speed \boldsymbol{v} (m/min) Conveyor speed \boldsymbol{v} (m/min)

Notes: 1. Figures assume that the carried objects are plastic containers. 2. Figures for ϕ 12 \sim ϕ 25 are st = 30, and for ϕ 32 \sim ϕ 63 are st = 50.

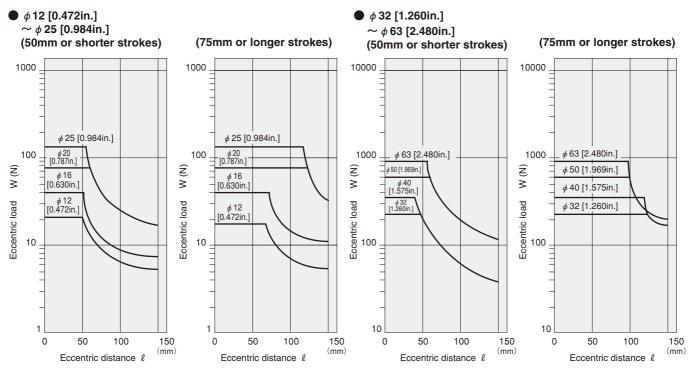
1kg = 2.205lb. 1m/min. = 3.281ft./min.

Allowable Load Range

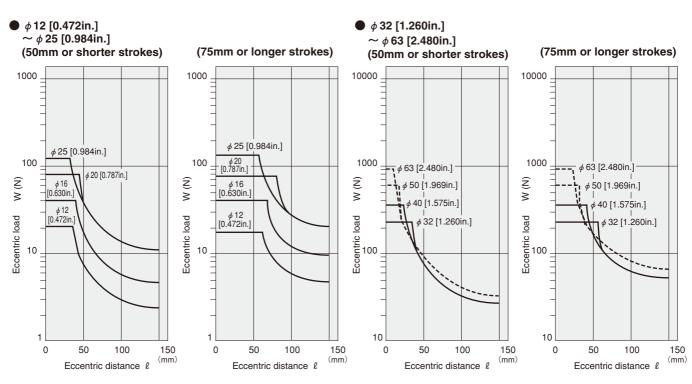

Use the graph values below for the relation between the load and piston speed. When these values are exceeded, install an external stopper.



1kg = 2.205lb. 1mm/s = 0.0394in./sec.


 Select a cylinder bore so that the total mass of the load is the theoretical output (in the graphs below) or less.

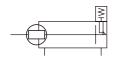
Bore size mm [in.]	Theoretical output				
φ 12 [0.472], φ 16 [0.630]	40% or less				
φ 20 [0.787], φ 25 [0984]	50% or less				
ϕ 32 [1.260] \sim ϕ 63 [2.480]	60% or less				

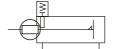


■ Slide bearing type (Applied pressure P = 0.5MPa [73psi.])

1N = 0.2248lbf. 1mm = 0.0394in.

■ Rolling bearing type (applied pressure P = 0.5MPa [73psi.])


JIG CYLINDERS WITH GUIDES


End Keep Cylinders ϕ 12 \sim ϕ 63

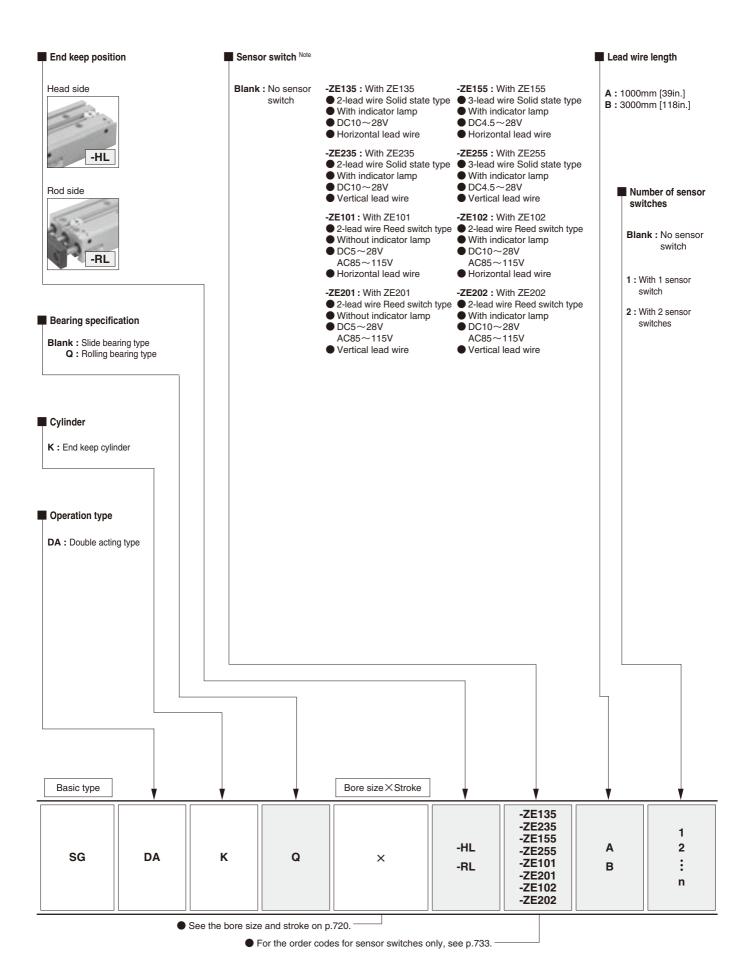
Symbols

Head side end keep

● Rod side end keep

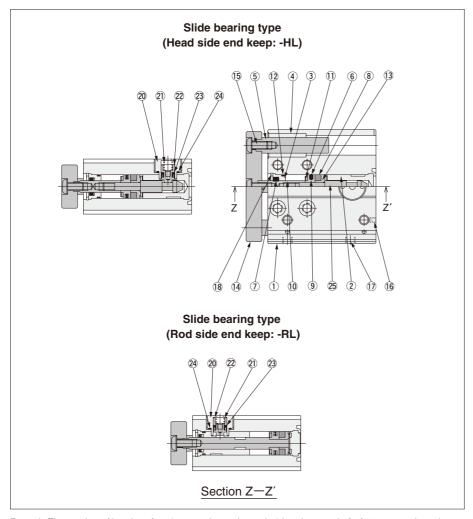
Specifications

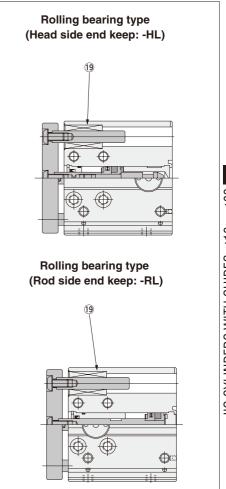
Item	Bore size mm [in.]	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480]	
Operation type			Double acting type							
Media					Α	ir				
Operating pressure range	MPa [psi.]	0.	2~1.0 [29~14	l5]		0.1	5~1.0 [22~14	15]		
Proof pressure	MPa [psi.]				1.5 [218]				
Operating temperature rai	nge °C [°F]		0~60 [32~140]							
Operating speed range m	m/s [in./sec.]	100~500 [3.9~19.7]								
Cushion			Rubber bumper							
Lubrication		Not required (If lubrication is required, use Turbine Oil Class 1 [ISO VG32] or equivalent.)								
Port size		M5>	<0.8	Rc1/8					1/4	
Stroke tolerance	mm [in.]				+1.5	+0.059 0				
Maximum holding force (At end keep) ^{Note}	N [lbf.]	79.1 [17.8]	140.7 [31.6]	219.8 [49.4]	343.4 [77.2]	562.7 [126.5]	879.2 [197.6]	1373.8 [308.8]	2181 [490.3]	
Backlash (At end keep)	mm [in.]	1.5 [0	0.059]			2.0 [0	0.079]			


Note: Durability at maximum holding force is 0.5million operations.

Bore Size and Stroke

		mm				
Bore size	Standard strokes	Maximum available stroke				
12	10, 20, 30, 40, 50, 75, 100	100				
16	10, 20, 30, 40, 30, 73, 100	100				
20						
25						
32	10 00 00 40 50 75 100 105 150 175 000	200				
40	10, 20, 30, 40, 50, 75, 100, 125, 150, 175, 200	200				
50						
63						


Remarks: 1. Non-standard strokes are available at 5mm intervals. Since the manufacturing method is collar packed, the total length, etc., are the same dimensions as the next size up standard stroke cylinder.


(Note that this cannot be applicable to rod side end keep)
2. For strokes of 75mm or longer, use long bushing type.

Note: For details of sensor switches, see p.733

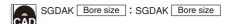
End keep cylinder (Diagram is for ϕ 12 [0.472in.].)

Remark: The number of bearings for 50mm stroke or shorter is 1 bearing per shaft. At 75mm stroke or longer, 2 bearings per shaft. The plate, piston rod, and guide rod cannot be disassembled.

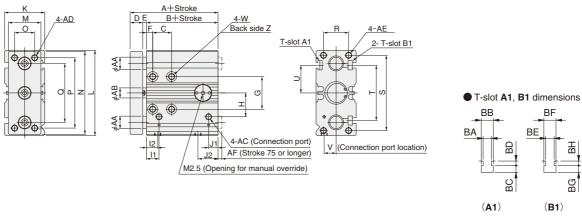
Major Parts and Materials

No.	Parts Bore mm	12	16	20	25	32	40	50	63		
1	Cylinder body				Aluminum all	oy (anodized)					
2	Head cover				Aluminum all	oy (anodized)					
3	Rod cover		Aluminum alloy (special wear-resistant treatment)								
4	Slide bearing			Aluminum	alloy (special	wear-resistant	treatment)				
(5)	Guide rod			Steel (hard o	hrome plated)	(rolling bearin	g type: Steel)				
6	Piston seal				Synthetic ru	ıbber (NBR)					
7	Rod seal				Synthetic ru	ıbber (NBR)					
8	Magnet				Plastic	magnet					
9	Piston			Aluminum	alloy (special r	ust prevention	treatment)				
10	Piston rod	Stai	nless steel (h	ard chrome pla	ed)		Steel (hard o	chrome plated)			
11)	Bumper				Synthetic ru	ibber (NBR)					
12	O-ring (cylinder section)				Synthetic ru	ıbber (NBR)					
13	Support			Aluminum	alloy (special r	ust prevention	treatment)				
14)	Plate			Д	luminum alloy	(black anodize	d)				
15	Bolt				Steel (nic	kel plated)					
16	Steel ball				St	eel					
17)	Plug				Mild steel (zinc plated)					
18	Snap ring				Steel (phosp	hate coating)					
19	Rolling bearing				Steel,	plastic					
20	Lock guide				Aluminum all	oy (anodized)					
21)	Spring				Piano	wire					
22	Lock piston	Stainless steel									
23	Lock piston seal	Synthetic rubber (NBR)									
24)	O-ring (lock guide section)				Synthetic ru	ıbber (NBR)					
25	Lock end	S	tainless stee	l (hard chrome	olated)		Stee	l (zinc plated)			

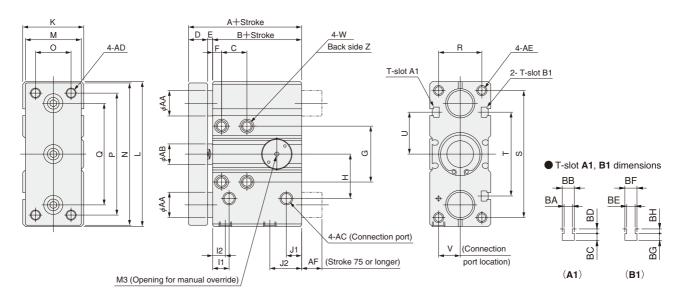
Seals


Туре			End keep	o cylinder		
Parts	Rod seal	Piston seal	Tube	gasket	Lock piston seal	Lock guide gasket
Bore size mm	1 lou seal	i istori seai	Rod side	Head side	Lock pistori seai	Lock guide gasket
12	MYR-6	COP-12	Y090260	None	MYN-4	Y090066
16	MYR-8	COP-16	Y090207	Y090207 MYN-4		Y090066
20	MYR-10	COP-20	Y090216	Y090216	MYN-5	Y090225
25	MYR-12	COP-25	Y090210	Y090210	MYN-5	Y090225
32	MYR-16	COP-32	L090084	L090084	MYN-10A	Y090217
40	MYR-16	COP-40	L090151	L090151	MYN-10A	Y090217
50	MYR-20	COP-50	L090174	L090174	MYN-16	Y090237
63	MYR-20	COP-63	L090180	L090180	MYN-16	Y090237

Mass


							g [oz.]
	Туре		End keep	o cylinder		Ор	tion
	Mass	Slide bea	aring type	Rolling be	aring type	Additional mass	of sensor switch
Bore si mm [in	-	Zero stroke mass	Additional mass for each 1mm [0.0394in.] stroke	Zero stroke mass	Additional mass for each 1mm [0.0394in.] stroke	ZE□□□A	ZE□□□B
12	50st or shorter	146 [5.15]	3.99 [0.1407]	139 [4.90]	3.63 [0.1280]		
[0.472]	75st or longer	156 [5.50]	3.99 [0.1407]	149 [5.26]	3.63 [0.1280]		
16	50st or shorter	277 [9.77]	5.2 [0.183]	238 [8.40]	5.17 [0.1824]		
[0.630]	75st or longer	307 [10.83]	5.2 [0.183]	279 [9.84]	5.17 [0.1824]		
20	50st or shorter	490 [17.28]	9.0 [0.317]	421 [14.85]	8.4 [0.2963]		
[0.787]	75st or longer	540 [19.05]	9.0 [0.317]	502 [17.71]	8.4 [0.2963]		
25	50st or shorter	687 [24.23]	10.81 [0.3813]	617 [21.76]	10.12 [0.3570]		
[0.984]	75st or longer	765 [26.98]	10.81 [0.3813]	695 [24.51]	10.12 [0.3570]	15 [0.53]	35 [1.23]
32	50st or shorter	1027 [36.23]	16 [0.564]	1018 [35.91]	13.71 [0.4836]	15 [0.55]	33 [1.23]
[1.260]	75st or longer	1404 [49.52]	16 [0.564]	1233 [43.49]	13.71 [0.4836]		
40	50st or shorter	1313 [46.31]	17.61 [0.6212]	1213 [42.79]	15.78 [0.5566]		
[1.575]	75st or longer	1553 [54.78]	17.61 [0.6212]	1513 [53.37]	15.78 [0.5566]		
50	50st or shorter	2123 [74.89]	26.5 [0.935]	2057 [72.56]	23.27 [0.8208]		
[1.969]	75st or longer	2426 [85.57]	26.5 [0.935]	2394 [84.44]	23.27 [0.8208]		
63	50st or shorter	2760 [97.35]	29.65 [1.0459]	2690 [94.89]	26.97 [0.9513]		
[2.480]	75st or longer	3060 [107.94]	29.65 [1.0459]	3028 [106.81]	26.97 [0.9513]		

Slide bearing type SGDAK

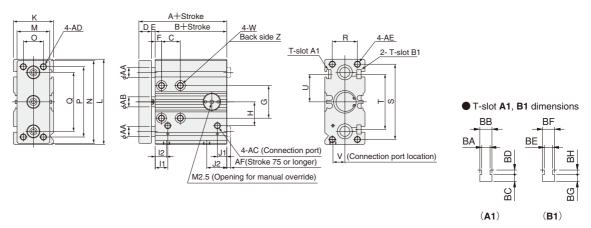

Bore size x Stroke −**HL**

 \bullet **12**, ϕ **16** (Drawings show ϕ 16.)

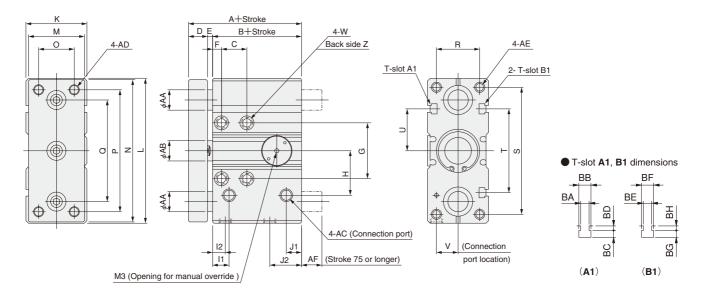
 $lack \phi$ **20** \sim ϕ **63** (Drawings show ϕ 32.)


Bore mm [in.]	Α	В	10	20		C troke		125 or more	D	Е	F	G	н	l1	12	J1	J2	к	L	М	N	0	Р	Q	R	s	т	U	V Note	W			
12 [0.472]	56	45	15	25	35	45	55	<u> </u>	8	3	5	22	17	10	9	6	14	28	58	22	56	14	48	42	18	51	37	18.5	8.5	φ 4.2 (Thru hole) Counterbore φ 8 Depth 4.5			
16 [0.630]	60	47	15	25	35	45	55	_	10	3	5	26	19	10	9	7.5	16	32	68	26	66	16	56	47	20	60	44	22	9.5	φ 4.2 (Thru hole) Counterbore φ 8 Depth 4.5			
20 [0.787]	72	56	20	30	40	50	60	110	12	4	6	30	27	11	11	10	20	40	82	36	80	24	66	58	26	72	54	27	13.5	φ 5.2 (Thru hole) Counterbore φ 9.5 Depth 5.5			
25 [0.984]	74	58	20	30	40	50	60	110	12	4	6	33	29	12	12	10	21	42	92	38	90	26	76	63	30	80	54	27	14.5	φ 5.2 (Thru hole) Counterbore φ 9.5 Depth 5.5			
32 [1.260]	79	60	20	30	40	50	60	110	15	4	7	44	35	13	10	12	25	48	114	44	112	28	96	80	34	100	66	33	17	φ 6.8 (Thru hole) Counterbore φ 11 Depth 7			
40 [1.575]	83	64	20	30	40	50	60	110	15	4	7	52	40	14	14	13	25	54	124	50	122	34	106	90	40	106	82	41	18	φ 6.8 (Thru hole) Counterbore φ 11 Depth 7			
50 [1.969]	100	77	20	30	40	50	60	110	18	5	8	66	52.5	15.5	10	15	31	66	150	62	148	42	120	110	44	130	100	50	22	φ 8.6 (Thru hole) Counterbore φ 14 Depth 9			
63 [2.480]	100	77	20	30	40	50	60	110	18	5	8	78	60	17	10	14	31	76	162	72	160	52	132	122	44	144	120	60	24	φ 8.6 (Thru hole) Counterbore φ 14 Depth 9			

Note: The **V** dimension shows the side connection port location.


Bore Code	z		AB	40	AD	AF	۸۵	T-s	slot	ВΑ	DD.	BC.	BD	DE.	DE.	BC.	ВП
mm [in.]		AA	AB	AC	AD	AE	AF	A1	B1	ВА	ВВ	ВС	ΒD	BE	ВГ	BG	ВН
12 [0.472]	M5×0.8 Depth 8	8	6	M5×0.8	M4×0.7	M4×0.7 Depth 8	_	M3×0.5	M4×0.7	3.3	5.8	3	1.5	4.3	7.3	3.5	2.5
16 [0.630]	M5×0.8 Depth 11	10	8	M5×0.8	M5×0.8	M5×0.8 Depth 10	3	M4×0.7	M4×0.7	4.3	7.3	3.5	1.5	4.3	7.3	3.5	3
20 [0.787]	M6×1 Depth 12	14	10	Rc1/8	M6×1	M6×1 Depth 12	7	M4×0.7	M5×0.8	4.3	7.3	4	3	5.3	8.3	4.5	3
25 [0.984]	M6×1 Depth 12	16	12	Rc1/8	M6×1	M6×1 Depth 12	8	M4×0.7	M5×0.8	4.3	7.3	4	3	5.3	8.3	4.5	3
32 [1.260]	M8×1.25 Depth 16	20	16	Rc1/8	M8×1.25	M8×1.25 Depth 16	16	M5×0.8	M5×0.8	5.3	8.3	4.5	3	5.3	8.3	4.5	3
40 [1.575]	M8×1.25 Depth 16	20	16	Rc1/8	M8×1.25	M8×1.25 Depth 16	12	M5×0.8	M6×1	5.3	8.3	4.5	3	6.3	10.3	5.5	3
50 [1.969]	M10×1.5 Depth 20	25	20	Rc1/4	M10×1.5	M10×1.5 Depth 20	9	M5×0.8	M8×1.25	5.3	8.3	4.5	3	8.3	13.3	7	4.5
63 [2.480]	M10×1.5 Depth 20	25	20	Rc1/4	M10×1.5	M10×1.5 Depth 20	9	M5×0.8	M8×1.25	5.3	8.3	4.5	3	8.3	13.3	7	4.5

Rolling bearing type SGDAKQ Bore size X

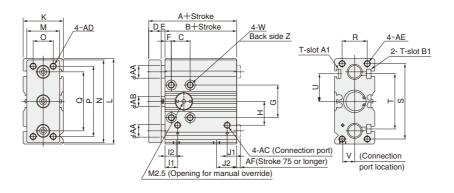

Stroke]-HL

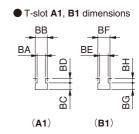
 \bullet **12,** ϕ **16** (Drawings show ϕ 16.)

\bullet ϕ **20** \sim ϕ **63** (Drawings show ϕ 32.)

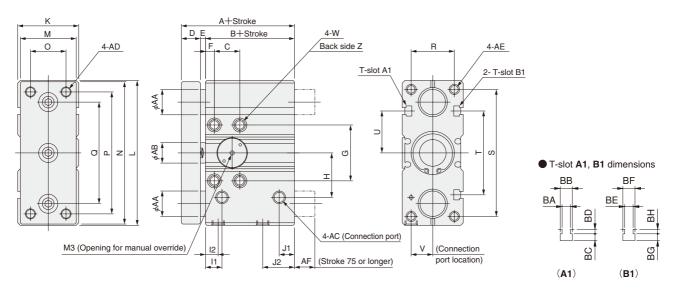
Code Bore mm [in.]	Α	В	10	00		C Strok		1407	D	Е	F	G	н	l1	12	J1	J2	K	L	М	N	0	Р	Q	R	s	т	U	V Note	W			
			_	_	_	_		125 or more																									
12 [0.472]	56	45	15	25	35	45	55	_	8	3	5	22	17	10	9	6	14	28	58	22	56	14	48	42	18	51	37	18.5	8.5	φ 4.2 (Thru hole) Counterbore φ 8 Depth 4.5			
16 [0.630]	60	47	15	25	35	45	55	_	10	3	5	26	19	10	9	7.5	16	32	68	26	66	16	56	47	20	60	44	22	9.5	φ 4.2 (Thru hole) Counterbore φ 8 Depth 4.5			
20 [0.787]	72	56	20	30	40	50	60	110	12	4	6	30	27	11	11	10	20	40	82	36	80	24	66	58	26	72	54	27	13.5	φ 5.2 (Thru hole) Counterbore φ 9.5 Depth 5.5			
25 [0.984]	74	58	20	30	40	50	60	110	12	4	6	33	29	12	12	10	21	42	92	38	90	26	76	63	30	80	54	27	14.5	φ 5.2 (Thru hole) Counterbore φ 9.5 Depth 5.5			
32 [1.260]	79	60	20	30	40	50	60	110	15	4	7	44	35	13	10	12	25	48	114	44	112	28	96	80	34	100	66	33	17	φ 6.8 (Thru hole) Counterbore φ 11 Depth 7			
40 [1.575]	83	64	20	30	40	50	60	110	15	4	7	52	40	14	14	13	25	54	124	50	122	34	106	90	40	106	82	41	18	φ 6.8 (Thru hole) Counterbore φ 11 Depth 7			
50 [1.969]	100	77	20	30	40	50	60	110	18	5	8	66	52.5	15.5	10	15	31	66	150	62	148	42	120	110	44	130	100	50	22	φ 8.6 (Thru hole) Counterbore φ 14 Depth 9			
63 [2.480]	100	77	20	30	40	50	60	110	18	5	8	78	60	17	10	14	31	76	162	72	160	52	132	122	44	144	120	60	24	φ 8.6 (Thru hole) Counterbore φ 14 Depth 9			

Note: The ${\bf V}$ dimension shows the side connection port location.


Rore Code	z	AA	АВ	AC	AD	AE	AF	T-:	slot	ВА	DD.	ВС	BD	DE.	DE	BG	ВИ
Bore mm [in.]	2	AA	AD	AC	AD	AE	AF	A1	B1	DA	DD	ьс	טם	DE	DF	ьц	БП
12 [0.472]	M5×0.8 Depth 8	6	6	M5×0.8	M4×0.7	M4×0.7 Depth 8	_	M3×0.5	M4×0.7	3.3	5.8	3	1.5	4.3	7.3	3.5	2.5
16 [0.630]	M5×0.8 Depth 11	8	8	M5×0.8	M5×0.8	M5×0.8 Depth 10	3	M4×0.7	M4×0.7	4.3	7.3	3.5	1.5	4.3	7.3	3.5	3
20 [0.787]	M6×1 Depth 12	12	10	Rc1/8	M6×1	M6×1 Depth 12	7	M4×0.7	M5×0.8	4.3	7.3	4	3	5.3	8.3	4.5	3
25 [0.984]	M6×1 Depth 12	13	12	Rc1/8	M6×1	M6×1 Depth 12	8	M4×0.7	M5×0.8	4.3	7.3	4	3	5.3	8.3	4.5	3
32 [1.260]	M8×1.25 Depth 16	16	16	Rc1/8	M8×1.25	M8×1.25 Depth 16	16	M5×0.8	M5×0.8	5.3	8.3	4.5	3	5.3	8.3	4.5	3
40 [1.575]	M8×1.25 Depth 16	16	16	Rc1/8	M8×1.25	M8×1.25 Depth 16	12	M5×0.8	M6×1	5.3	8.3	4.5	3	6.3	10.3	5.5	3
50 [1.969]	M10×1.5 Depth 20	20	20	Rc1/4	M10×1.5	M10×1.5 Depth 20	9	M5×0.8	M8×1.25	5.3	8.3	4.5	3	8.3	13.3	7	4.5
63 [2.480]	M10×1.5 Depth 20	20	20	Rc1/4	M10×1.5	M10×1.5 Depth 20	9	M5×0.8	M8×1.25	5.3	8.3	4.5	3	8.3	13.3	7	4.5


Slide bearing type SGDAK

Bore size x Stroke −RL


SGDAK Bore size : SGDAK Bore size

 \bullet **12**, ϕ **16** (Drawings show ϕ 16.)

 $lacktriangledown \phi$ **20** \sim ϕ **63** (Drawings show ϕ 32.)

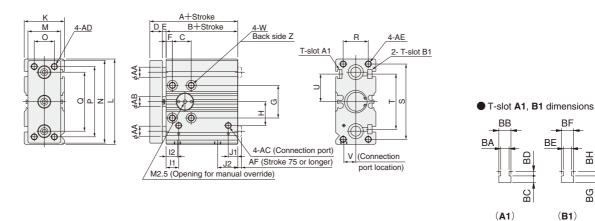
Bore mm [in.]	Α	В	10	20		troke		125 or more	D	E	F	G	н	l1	12	J1	J2	к	L	М	N	0	Р	Q	R	s	т	U	V Note	w			
12 [0.472]	56	45	15	25	35	45	55	<u> </u>	8	3	5	22	17	10	9	6	14	28	58	22	56	14	48	42	18	51	37	18.5	8.5	φ 4.2 (Thru hole) Counterbore φ 8 Depth 4.5			
16 [0.630]	60	47	15	25	35	45	55	_	10	3	5	26	19	10	9	7.5	16	32	68	26	66	16	56	47	20	60	44	22	9.5	φ 4.2 (Thru hole) Counterbore φ 8 Depth 4.5			
20 [0.787]	72	56	20	30	40	50	60	110	12	4	6	30	27	11	11	10	20	40	82	36	80	24	66	58	26	72	54	27	13.5	ø 5.2 (Thru hole) Counterbore ø 9.5 Depth 5.5			
25 [0.984]	74	58	20	30	40	50	60	110	12	4	6	33	29	12	12	10	21	42	92	38	90	26	76	63	30	80	54	27	14.5	φ 5.2 (Thru hole) Counterbore φ 9.5 Depth 5.5			
32 [1.260]	79	60	20	30	40	50	60	110	15	4	7	44	35	13	10	12	25	48	114	44	112	28	96	80	34	100	66	33	17	φ 6.8 (Thru hole) Counterbore φ 11 Depth 7			
40 [1.575]	83	64	20	30	40	50	60	110	15	4	7	52	40	14	14	13	25	54	124	50	122	34	106	90	40	106	82	41	18	φ 6.8 (Thru hole) Counterbore φ 11 Depth 7			
50 [1.969]	100	77	20	30	40	50	60	110	18	5	8	66	52.5	15.5	10	15	31	66	150	62	148	42	120	110	44	130	100	50	22	φ 8.6 (Thru hole) Counterbore φ 14 Depth 9			
63 [2.480]	100	77	20	30	40	50	60	110	18	5	8	78	60	17	10	14	31	76	162	72	160	52	132	122	44	144	120	60	24	φ 8.6 (Thru hole) Counterbore φ 14 Depth 9			

Note: The \boldsymbol{V} dimension shows the side connection port location.

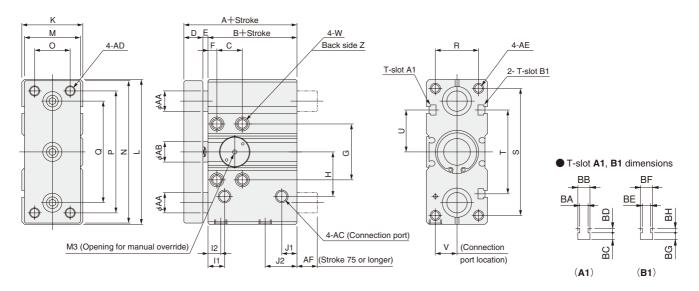
Bore Code	-		4.0	40	AD	45	45	T-:	slot	D.A.	-	ВО.		D.E.	DE	D0	BII
mm [in.]	2	AA	AB	AC	AD	AE	AF	A1	B1	ВА	ВВ	ВС	BD	BE	BF	BG	ВН
12 [0.472]	M5×0.8 Depth 8	8	6	M5×0.8	M4×0.7	M4×0.7 Depth 8	_	M3×0.5	M4×0.7	3.3	5.8	3	1.5	4.3	7.3	3.5	2.5
16 [0.630]	M5×0.8 Depth 11	10	8	M5×0.8	M5×0.8	M5×0.8 Depth 10	3	M4×0.7	M4×0.7	4.3	7.3	3.5	1.5	4.3	7.3	3.5	3
20 [0.787]	M6×1 Depth 12	14	10	Rc1/8	M6×1	M6×1 Depth 12	7	M4×0.7	M5×0.8	4.3	7.3	4	3	5.3	8.3	4.5	3
25 [0.984]	M6×1 Depth 12	16	12	Rc1/8	M6×1	M6×1 Depth 12	8	M4×0.7	M5×0.8	4.3	7.3	4	3	5.3	8.3	4.5	3
32 [1.260]	M8×1.25 Depth 16	20	16	Rc1/8	M8×1.25	M8×1.25 Depth 16	16	M5×0.8	M5×0.8	5.3	8.3	4.5	3	5.3	8.3	4.5	3
40 [1.575]	M8×1.25 Depth 16	20	16	Rc1/8	M8×1.25	M8×1.25 Depth 16	12	M5×0.8	M6×1	5.3	8.3	4.5	3	6.3	10.3	5.5	3
50 [1.969]	M10×1.5 Depth 20	25	20	Rc1/4	M10×1.5	M10×1.5 Depth 20	9	M5×0.8	M8×1.25	5.3	8.3	4.5	3	8.3	13.3	7	4.5
63 [2.480]	M10×1.5 Depth 20	25	20	Rc1/4	M10×1.5	M10×1.5 Depth 20	9	M5×0.8	M8×1.25	5.3	8.3	4.5	3	8.3	13.3	7	4.5

Rolling bearing type SGDAKQ

Bore size


 $\mathbb{I}_{\mathbf{X}}$

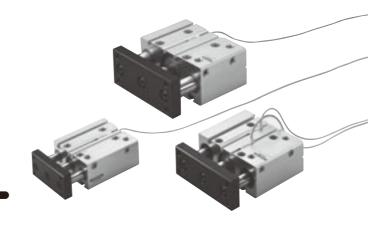
Stroke]-**RL**



BH

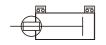
 \bullet **12,** ϕ **16** (Drawings show ϕ 16.)

• ϕ **20** ~ ϕ **63** (Drawings show ϕ 32.)


Bore mm [in.]	Α	В	10	20		C Strok	e 50~100	195 or more	D	Е	F	G	н	l1	12	J1	J2	K	L	М	N	0	Р	Q	R	s	т	U	V Note	W		
12 [0.472]	56	45	-	_	_	45		123 01 111016	8	3	5	22	17	10	9	6	14	28	58	22	56	14	48	42	18	51	37	18.5	8.5	φ 4.2 (Thru hole) Counterbore φ 8 Depth 4.5		
16 [0.630]	60	47	15	25	35	45	55	_	10	3	5	26	19	10	9	7.5	16	32	68	26	66	16	56	47	20	60	44	22	9.5	φ 4.2 (Thru hole) Counterbore φ 8 Depth 4.5		
20 [0.787]	72	56	20	30	40	50	60	110	12	4	6	30	27	11	11	10	20	40	82	36	80	24	66	58	26	72	54	27	13.5	φ 5.2 (Thru hole) Counterbore φ 9.5 Depth 5.5		
25 [0.984]	74	58	20	30	40	50	60	110	12	4	6	33	29	12	12	10	21	42	92	38	90	26	76	63	30	80	54	27	14.5	φ 5.2 (Thru hole) Counterbore φ 9.5 Depth 5.5		
32 [1.260]	79	60	20	30	40	50	60	110	15	4	7	44	35	13	10	12	25	48	114	44	112	28	96	80	34	100	66	33	17	φ 6.8 (Thru hole) Counterbore φ 11 Depth 7		
40 [1.575]	83	64	20	30	40	50	60	110	15	4	7	52	40	14	14	13	25	54	124	50	122	34	106	90	40	106	82	41	18	φ 6.8 (Thru hole) Counterbore φ 11 Depth 7		
50 [1.969]	100	77	20	30	40	50	60	110	18	5	8	66	52.5	15.5	10	15	31	66	150	62	148	42	120	110	44	130	100	50	22	φ 8.6 (Thru hole) Counterbore φ 14 Depth :		
63 [2.480]	100	77	20	30	40	50	60	110	18	5	8	78	60	17	10	14	31	76	162	72	160	52	132	122	44	144	120	60	24	φ 8.6 (Thru hole) Counterbore φ 14 Depth 9		

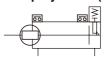
Note: The ${\bf V}$ dimension shows the side connection port location.

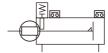
Bore Code	Z		AB	AC	AD	AE	AF	T-8	slot	ВА	ВВ	BC.	BD	DE.	DE	ВС	ВЦ
mm [in.]	2	AA	AD	AC	AD	AE	АГ	A1	B1	DA	ВВ	ьс	טם	DE	ВΓ	ь	ВΠ
12 [0.472]	M5×0.8 Depth 8	6	6	M5×0.8	M4×0.7	M4×0.7 Depth 8	_	M3×0.5	M4×0.7	3.3	5.8	3	1.5	4.3	7.3	3.5	2.5
16 [0.630]	M5×0.8 Depth 11	8	8	M5×0.8	M5×0.8	M5×0.8 Depth 10	3	M4×0.7	M4×0.7	4.3	7.3	3.5	1.5	4.3	7.3	3.5	3
20 [0.787]	M6×1 Depth 12	12	10	Rc1/8	M6×1	M6×1 Depth 12	7	M4×0.7	M5×0.8	4.3	7.3	4	3	5.3	8.3	4.5	3
25 [0.984]	M6×1 Depth 12	13	12	Rc1/8	M6×1	M6×1 Depth 12	8	M4×0.7	M5×0.8	4.3	7.3	4	3	5.3	8.3	4.5	3
32 [1.260]	M8×1.25 Depth 16	16	16	Rc1/8	M8×1.25	M8×1.25 Depth 16	16	M5×0.8	M5×0.8	5.3	8.3	4.5	3	5.3	8.3	4.5	3
40 [1.575]	M8×1.25 Depth 16	16	16	Rc1/8	M8×1.25	M8×1.25 Depth 16	12	M5×0.8	M6×1	5.3	8.3	4.5	3	6.3	10.3	5.5	3
50 [1.969]	M10×1.5 Depth 20	20	20	Rc1/4	M10×1.5	M10×1.5 Depth 20	9	M5×0.8	M8×1.25	5.3	8.3	4.5	3	8.3	13.3	7	4.5
63 [2.480]	M10×1.5 Depth 20	20	20	Rc1/4	M10×1.5	M10×1.5 Depth 20	9	M5×0.8	M8×1.25	5.3	8.3	4.5	3	8.3	13.3	7	4.5

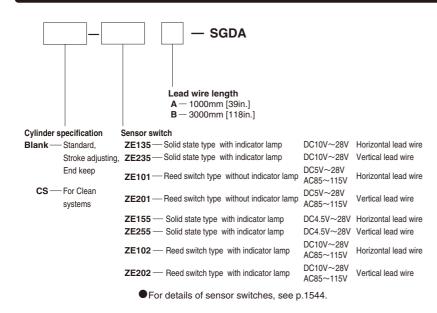

SENSOR SWITCHES FOR JIG CYLINDERS WITH GUIDES

Solid State Type, Reed Switch Type

Symbols


Standard cylinder


Stroke adjusting cylinder


● End keep cylinder (Head side)

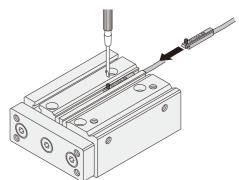
● End keep cylinder (Rod side)

Order Codes

Minimum Cylinder Strokes When Using Sensor Switches

Solid state type

•)		mm
Bore size	2 pcs. m	nounting Note	1 pc. mounting
mm [in.]	1-surface mounting	2-surface mounting	r pc. mounting
12~63 [0.472~2.480]	1	0	5


Note: 2 pcs. mounting is possible at stroke 5mm. Be aware, however, that overlapping may occur.

Reed switch type

•Reed swi	itch type		mm
Bore size	2 pcs. n	nounting	1 pc. mounting
mm [in.]	1-surface mounting	2-surface mounting	r pc. mounting
12~63 [0.472~2.480]	1	0	10

Moving Sensor Switch

- Loosening the mounting screw allows the sensor switch to be moved along the switch mounting groove on the cylinder body.
- Tighten the mounting screw with a tightening torque of 0.1~0.2N·m [0.9~

Sensor Switch Operating Range, Response Differential, and Maximum Sensing Location

Operating range: &

The distance the piston travels in one direction, while the switch is in the ON position.

Response differential: C

The distance between the point where the piston turns the switch ON and the point where the switch is turned OFF as the piston travels in the opposite direction.

Solid state type

			mm [in.]
32 [1 260]	40 [1 575]	50 [1 060]	63 [2 /80]

Item Bore size	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480]
Operating range: ℓ	2~4 [0.079~0.157]	2~5 [0.079~0.197]	3.5~7.5 [0.138~0.295]	4~8 [0.157~0.315]	3~7 [0.118~0.276]	3.5~7.5 [0.138~0.295]	3.5~7.5 [0.138~0.295]	4~8.5 [0.157~0.335]
Response differential: C				1.0 [0.03	9] or less			
Maximum sensing location Note				6 [0.	236]			

Note: This is the length measured from the switch's opposite end side to lead wire Remark: The above table shows reference values.

Reed switch type

mm	Tim '	•
mm	11 1.	

	<i>,</i> ,								
Item Bore size	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480]	
Operating range: ℓ	5.5~8 [0.217~0.315]	6.5~9 [0.256~0.354]	10~13 [0.394~0.512]	11.5~15 [0.453~0.591]	9~11.5 [0.354~0.453]	10~13.5 [0.394~0.531]	10.5~14.5 [0.413~0.571]	11~15.5 [0.433~0.610]	
Response differential: C			1.5 [0.059] or less						
Maximum sensing location Note			10 [0.394]						

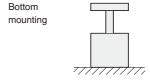
Note: This is the length measured from the switch's opposite end side to lead wire. Remark: The above table shows reference values.

C (Response differential) ON C (Response differential) Maximum sensing location

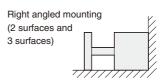
When Mounting Cylinders with Sensor Switches in Close Proximity

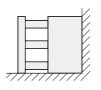
When mounting cylinders in close proximity, install the cylinder so that it exceeds the values in the table below.

The end plates are the same side mm [in.]

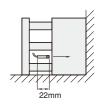

				[]
Bore size	Solid sta	ate type	Reed sw	itch type
DOIE SIZE	Α	В	Α	В
12 [0.472]	33 [1.299]		28 [1.102]	
16 [0.630]	37 [1.457]	5 [0.197]	32 [1.260]	
20 [0.787]	45 [1.772]		40 [1.575]	
25 [0.984]	50 [1.969]		42 [1.654]	0
32 [1.260]	56 [2.205]	8 [0.315]	48 [1.890]	U
40 [1.575]	62 [2.441]		54 [2.126]	
50 [1.969]	78 [3.071]	10 [0 470]	66 [2.598]	
63 [2.480]	88 [3.465]	12 [0.472]	76 [2.992]	

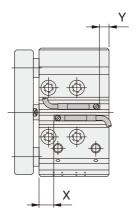
The end plates are the opposite side mm [in.]


The one places are the opposite olds									
Davo sizo	Solid st	ate type	Reed switch type						
Bore size A		В	Α	В					
12 [0.472]	34 [1.339]		28 [1.102]						
16 [0.630]	38 [1.496]	6 [0.236]	32 [1.260]						
20 [0.787]	46 [1.811]		40 [1.575]						
25 [0.984]	54 [2.126]		42 [1.654]	0					
32 [1.260]	60 [2.362]	12 [0.472]	48 [1.890]	U					
40 [1.575]	66 [2.598]		54 [2.126]						
50 [1.969]	84 [3.307]	10 [0 700]	66 [2.598]						
63 [2.480]	94 [3.701]	18 [0.709]	76 [2.992]						


Mounting and Removing Sensor Switches

In Jig Cylinders with Guides of $\,\phi$ 12 \sim ϕ 63, be aware that sensor switches cannot be mounted or removed when strokes of 10mm or shorter mounted in the application shown below.




* For strokes of 20mm or longer, sensor switches can be mounted and removed when the plate (rods extend) is extended.

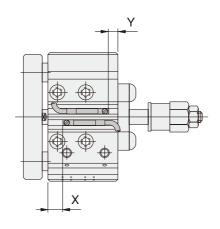


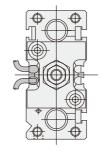
Mounting Location of End of Stroke Detection Sensor Switch

When the sensor switch is mounted in the locations shown below (the figures in the tables are reference values), the magnet comes to the maximum sensing location of the sensor switch at the end of the stroke.

Standard cylinder

** The scraper specification has a configuration of the standard cylinder body length +10mm [0.394in.], with the retracted side connection port location shifted 10mm [0.394in.] toward the head side.


■ Solid state type

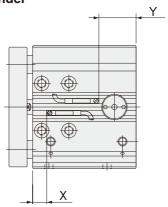

	— ***** ***** mm [in.										
Co	ode	Bore size	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480]	
х	v	Without scraper	9.5 [0.374]	11 [0.433]	14 [0.551]	16 [0.630]	15 [0.591]	16.5 [0.650]	16.5 [0.650]	16.5 [0.650]	
	*	With scraper	19.5 [0.768]	21 [0.827]	24 [0.945]	26 [1.024]	25 [0.984]	26.5 [1.043]	26.5 [1.043]	26.5 [1.043]	
	.,	Without scraper	3.5 [0.138]	4.5 [0.177]	10 [0.394]	10 [0.394]	13 [0.512]	15.5 [0.610]	18.5 [0.728]	18.5 [0.728]	
Υ	With scraper	3.5 [0.138]	4.5 [0.177]	10 [0.394]	10 [0.394]	13 [0.512]	15.5 [0.610]	18.5 [0.728]	18.5 [0.728]		

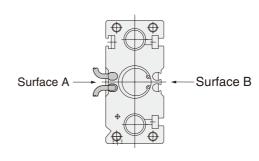
■ Reed switch type

Ξ	— mm lin.										
(Code	Bore size	12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480]	
х	V	Without scraper	5.5 [0.217]	7 [0.276]	10 [0.394]	12 [0.472]	11 [0.433]	12.5 [0.492]	12.5 [0.492]	12.5 [0.492]	
	X	With scraper	15.5 [0.610]	17 [0.669]	20 [0.787]	22 [0.866]	21 [0.827]	22.5 [0.886]	22.5 [0.886]	22.5 [0.886]	
Ī	v	Without scraper	0 [0]	0 [0]	6 [0.236]	6 [0.236]	9 [0.354]	11.5 [0.453]	14.5 [0.571]	14.5 [0.571]	
	Υ	With scraper	0 [0]	0 [0]	6 [0.236]	6 [0.236]	9 [0.354]	11.5 [0.453]	14.5 [0.571]	14.5 [0.571]	

Stroke adjusting cylinder

■ Solid state type


							111	ım [ın.]
Code Bore size	12	16	20	25	32	40	50	63
	[0.472]	[0.630]	[0.787]	[0.984]	[1.260]	[1.575]	[1.969]	[2.480]
х	7	7	10	11	15	16.5	16.5	16.5
	[0.276]	[0.276]	[0.394]	[0.433]	[0.591]	[0.650]	[0.650]	[0.650]
Y	6	8	14	15	13	15.5	18.5	18.5
	[0.236]	[0.315]	[0.551]	[0.591]	[0.512]	[0.610]	[0.728]	[0.728]


■ Reed switch type

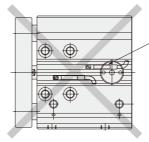
							m	m [ın.
Code Bore size	12	16	20	25	32	40	50	63
	[0.472]	[0.630]	[0.787]	[0.984]	[1.260]	[1.575]	[1.969]	[2.480]
х	3	3	6	7	11	12.5	12.5	12.5
	[0.118]	[0.118]	[0.236]	[0.276]	[0.433]	[0.492]	[0.492]	[0.492]
Υ	2	4	10	11	9	11.5	14.5	14.5
	[0.079]	[0.157]	[0.394]	[0.433]	[0.354]	[0.453]	[0.571]	[0.571]

When the sensor switch is mounted in the locations shown below (the figures in the tables are reference values), the magnet comes to the maximum sensing location of the sensor switch at the end of the stroke.

Head side end keep cylinder

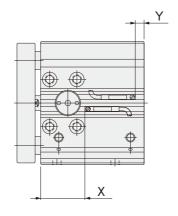
■ Solid state type

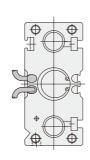
							- 111	iiii [iii.]
Code Bore size	12	16	20	25	32	40	50	63
	[0.472]	[0.630]	[0.787]	[0.984]	[1.260]	[1.575]	[1.969]	[2.480]
х	9.5	11	14	16	15	16.5	16.5	16.5
	[0.374]	[0.433]	[0.551]	[0.630]	[0.591]	[0.650]	[0.650]	[0.650]
Υ	23.5	24.5	30	30	33	35.5	48.5	48.5
	[0.925]	[0.965]	[1.181]	[1.181]	[1.299]	[1.398]	[1.909]	[1.909]


Remark: A sensor switch cannot be mounted on surface A when the cylinder is St=10 and a head side end keep. (Can be mounted on surface B)

Reed switch type

								[]
Code Bore size	e 12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480]
х	5.5	7	10	12	11	12.5	12.5	12.5
	[0.217]	[0.276]	[0.394]	[0.472]	[0.433]	[0.492]	[0.492]	[0.492]
Y	20	20	26	26	29	31.5	44.5	44.5
	[0.787]	[0.787]	[1.024]	[1.024]	[1.142]	[1.240]	[1.752]	[1.752]


Remark: A sensor switch cannot be mounted on surface A when the cylinder is St=10 and a head side end keep. (Can be mounted on surface B)

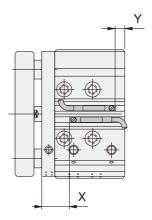

Caution: As can be seen in the diagram to the right, when a sensor switch is mounted on a head side end keep cylinder (-HL), both the lead wires cannot be taken out on the head side. They can, however, be mounted on surface B.

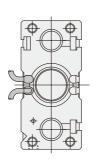
Because the sensor switch interferes with the end keep function section.

Rod side end keep cylinder

Solid state type

mm [in.]									
Code Bore size	12	16	20	25	32	40	50	63	
	[0.472]	[0.630]	[0.787]	[0.984]	[1.260]	[1.575]	[1.969]	[2.480]	
х	29.5	31	34	36	35	36.5	46.5	46.5	
	[1.161]	[1.220]	[1.339]	[1.417]	[1.378]	[1.437]	[1.831]	[1.831]	
Y	3.5	4.5	10	10	13	15.5	18.5	18.5	
	[0.138]	[0.177]	[0.394]	[0.394]	[0.512]	[0.610]	[0.728]	[0.728]	


■ Reed switch type


mm [in.								
Code Bore size	12	16	20	25	32	40	50	63
	[0.472]	[0.630]	[0.787]	[0.984]	[1.260]	[1.575]	[1.969]	[2.480]
х	25.5	27	30	32	31	32.5	42.5	42.5
	[1.004]	[1.063]	[1.181]	[1.260]	[1.220]	[1.280]	[1.673]	[1.673]
Υ	0	0	6	6	9	11.5	14.5	14.5
	[0]	[0]	[0.236]	[0.236]	[0.354]	[0.453]	[0.571]	[0.571]

Mounting Location of End of Stroke Detection Sensor Switch

When the sensor switch is mounted in the locations shown below (the figures in the tables are reference values), the magnet comes to the maximum sensing location of the sensor switch at the end of the stroke.

Cylinders for clean systems

■ Solid state type

							ım [ın.]	
Code Bore size	12	16	20	25	32	40	50	63
	[0.472]	[0.630]	[0.787]	[0.984]	[1.260]	[1.575]	[1.969]	[2.480]
x	19.5	21	24	26	25	26.5	26.5	26.5
	[0.768]	[0.827]	[0.945]	[1.024]	[0.984]	[1.043]	[1.043]	[1.043]
Υ	3.5	4.5	10	10	13	15.5	18.5	18.5
	[0.138]	[0.177]	[0.394]	[0.394]	[0.512]	[0.610]	[0.728]	[0.728]

Reed switch type

				111111 [111.]					
Code Bore size	e 12 [0.472]	16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480]	
х	15.5 [0.610]	17 [0.669]	20 [0.787]	22 [0.866]	21 [0.827]	22.5 [0.886]	22.5 [0.886]	22.5 [0.886]	
Υ	0 [0]	0 [0]	6 [0.236]	6 [0.236]	9 [0.354]	11.5 [0.453]	14.5 [0.571]	14.5 [0.571]	